
Public

SMART CONTRACT AUDIT REPORT

for

JPEG’d Protocol

Prepared By: Yiqun Chen

PeckShield
December 31, 2021

1/21 PeckShield Audit Report #: 2021-458

contact@peckshield.com

Public

Document Properties

Client JPEG’d Protocol
Title Smart Contract Audit Report
Target JPEG’d
Version 1.0
Author Xuxian Jiang
Auditors Stephen Bie, Yiqun Chen, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 December 31, 2021 Xuxian Jiang Final Release
1.0-rc1 December 18, 2021 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/21 PeckShield Audit Report #: 2021-458

Public

Contents

1 Introduction 4
1.1 About JPEG’d . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Possible Costly JPEGD-yVault LP From Improper Initialization 11
3.2 Asset Consistency Check Between Vault And Strategy 12
3.3 Improved Precision By Multiplication And Division Reordering 14
3.4 Trust Issue of Admin Keys . 15
3.5 Duplicate Pool Detection and Prevention . 16

4 Conclusion 19

References 20

3/21 PeckShield Audit Report #: 2021-458

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the JPEG’d protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About JPEG’d

JPEG’d introduces a new DeFi primitive - non-fungible debt positions (NFDP). It creates a permis-
sionless and trustless collateralized debt position with NFTs as the collateral so that NFT holders can
obtain liquidity. In particular, NFT-based collateral can be deposited into a vault to mint PUSD, which
joins a basket of other tokens to peg its value as close to $1 as possible at all times. Additionally,
incentives will be offered to liquidity providers to add liquidity to the pool. The basic information of
the audited protocol is as follows:

Table 1.1: Basic Information of JPEG’d

Item Description
Name JPEG’d Protocol
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report December 31, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/iceboxup/jpegd.git (679bb3c)

4/21 PeckShield Audit Report #: 2021-458

Public

1.2 About PeckShield

PeckShield Inc. [13] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [12]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would

5/21 PeckShield Audit Report #: 2021-458

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/21 PeckShield Audit Report #: 2021-458

Public

additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [11], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/21 PeckShield Audit Report #: 2021-458

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/21 PeckShield Audit Report #: 2021-458

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the JPEG’d protocol. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 3

Informational 0

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/21 PeckShield Audit Report #: 2021-458

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities and 3 low-severity vulnerabilities.

Table 2.1: Key JPEG’d Audit Findings

ID Severity Title Category Status
PVE-001 Medium Possible Costly JPEGD-yVault LP From

Improper Initialization
Time and State Confirmed

PVE-002 Low Asset Consistency Check Between Vault
And Strategy

Coding Practices Confirmed

PVE-003 Low Improved Precision By Multiplication
And Division Reordering

Numeric Errors Confirmed

PVE-004 Medium Trust Issue of Admin Keys Security Features Mitigated
PVE-005 Low Duplicate Pool Detection and Preven-

tion
Business Logic Confirmed

Besides the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/21 PeckShield Audit Report #: 2021-458

Public

3 | Detailed Results

3.1 Possible Costly JPEGD-yVault LP From Improper
Initialization

• ID: PVE-001

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: YVault

• Category: Time and State [7]

• CWE subcategory: CWE-362 [4]

Description

The JPEG’d protocol allows users to deposit fungible assets into autocompounding strategy contracts
(e.g. StrategyPUSDConvex). The users will get in return JPEGD-wrapped tokens to represent the vault
pool share. While examining the share calculation with the given deposits, we notice an issue that
may unnecessarily make the pool token extremely expensive and bring hurdles (or even causes loss)
for later depositors.

To elaborate, we show below the deposit() routine, which is used to deposit the supported assets
and get respective pool tokens in return. The issue occurs when the pool is being initialized under
the assumption that the current pool is empty.

138 /// @notice Allows users to deposit ‘token ‘. Contracts can’t call this function
139 /// @param _amount The amount to deposit
140 f unc t i on d e p o s i t (uint256 _amount) pub l i c noCont rac t (msg . sender) {
141 r equ i r e (_amount > 0 , "INVALID_AMOUNT") ;
142 uint256 ba l a n c eBe f o r e = balance () ;
143 token . s a f eT ran s f e rF rom (msg . sender , address (t h i s) , _amount) ;
144 uint256 s upp l y = t o t a l S u p p l y () ;
145 uint256 s h a r e s ;
146 i f (s upp l y == 0) {
147 s h a r e s = _amount ;
148 } e l s e {
149 // balanceBefore can’t be 0 if totalSupply is > 0
150 s h a r e s = (_amount ∗ supp l y) / ba l a n c eBe f o r e ;

11/21 PeckShield Audit Report #: 2021-458

Public

151 }
152 _mint (msg . sender , s h a r e s) ;
153
154 emit Depos i t (msg . sender , _amount) ;
155 }

Listing 3.1: YVault:: deposit ()

Specifically, when the pool is being initialized (line 146), the share value directly takes the value
of shares = _amount (line 147), which is manipulatable by the malicious actor. As this is the first
deposit, the current total supply equals the calculated shares = 1 WEI. With that, the actor can
further donate a huge amount of assets with the goal of making the pool token extremely expensive.

An extremely expensive pool token can be very inconvenient to use as a small number of 1WEI
may denote a large value. Furthermore, it can lead to precision issue in truncating the computed pool
tokens for deposited assets. If truncated to be zero, the deposited assets are essentially considered
dust and kept by the pool without returning any pool tokens.

This is a known issue that has been mitigated in popular Uniswap. When providing the initial
liquidity to the contract (i.e. when totalSupply is 0), the liquidity provider must sacrifice 1000 LP
tokens (by sending them to address(0)). By doing so, we can ensure the granularity of the LP tokens
is always at least 1000 and the malicious actor is not the sole holder. This approach may bring an
additional cost for the initial liquidity provider, but this cost is expected to be low and acceptable.

Recommendation Revise current execution logic to defensively calculate the share amount
when the pool is being initialized. An alternative solution is to ensure guarded launch that safeguards
the first deposit to avoid being manipulated.

Status This issue has been confirmed. The team will exercise extra caution in properly initializing
the pool.

3.2 Asset Consistency Check Between Vault And Strategy

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Controller

• Category: Coding Practices [8]

• CWE subcategory: CWE-1099 [1]

Description

In JPEG’d, there is a one-to-one mapping between a vault and its strategy. To properly link a vault

with its strategy, it is natural for the two to operate on the same underlying asset. If these two

12/21 PeckShield Audit Report #: 2021-458

Public

have different underlying assets, the link should not be successful. If we examine the setStrategy()

routine in the Controller contract, this routine allows for dynamic binding of the vault with a new
strategy (line 97). A successful binding needs to satisfy a number of requirements. One specific
one is shown as follows: require(IVault(vaults[_token]).token()== IStrategy(_strategy).want()).
Apparently, this requirement guarantees the consistency of the underlying asset between the vault

and its associated strategy.

82 f unc t i on s e t S t r a t e g y (IERC20 _token , I S t r a t e g y _st ra t egy)
83 ex te rna l
84 on l yRo l e (STRATEGIST_ROLE)
85 {
86 r equ i r e (
87 a p p r o v e dS t r a t e g i e s [_token] [_s t r a t egy] == true ,
88 "STRATEGY_NOT_APPROVED"
89) ;
90
91 I S t r a t e g y _cur rent = s t r a t e g i e s [_token] ;
92 i f (address (_cur rent) != address (0)) {
93 // withdraw all funds from the current strategy
94 _current . w i t hd r awA l l () ;
95 _current . withdraw (address (j p eg)) ;
96 }
97 s t r a t e g i e s [_token] = _st ra t egy ;
98 }

Listing 3.2: Controller :: setStrategy ()

However, if we examine the constructor() of current strategy contracts (e.g., StrategyPUSDConvex
), the requirement of having the same underlying asset is not enforced. A new strategy deployment
with an ill-provided list of arguments with an unmatched underlying asset may cause unintended
consequences, including possible asset loss. With that, we suggest to maintain an invariant by
ensuring the consistency of the underlying asset when a new strategy is being deployed or linked.

Recommendation Ensure the consistency of the underlying asset between the vault and its
associated strategy. An example revision is shown below.

82 f unc t i on s e t S t r a t e g y (IERC20 _token , I S t r a t e g y _st ra t egy)
83 ex te rna l
84 on l yRo l e (STRATEGIST_ROLE)
85 {
86 r equ i r e (
87 a p p r o v e dS t r a t e g i e s [_token] [_s t r a t egy] == true ,
88 "STRATEGY_NOT_APPROVED"
89) ;
90 r equ i r e (v a u l t s [_token]) . token () == I S t r a t e g y (_s t ra t egy) . want () , "!asset")
91
92 I S t r a t e g y _cur rent = s t r a t e g i e s [_token] ;
93 i f (address (_cur rent) != address (0)) {
94 // withdraw all funds from the current strategy

13/21 PeckShield Audit Report #: 2021-458

Public

95 _current . w i t hd r awA l l () ;
96 _current . withdraw (address (j p eg)) ;
97 }
98 s t r a t e g i e s [_token] = _st ra t egy ;
99 }

Listing 3.3: Revised Controller :: setStrategy ()

Status The issue has been acknowledged.

3.3 Improved Precision By Multiplication And Division
Reordering

• ID: PVE-003

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: Multiple Contracts

• Category: Numeric Errors [10]

• CWE subcategory: CWE-190 [2]

Description

SafeMath is a widely-used Solidity math library that is designed to support safe math operations by
preventing common overflow or underflow issues when working with uint256 operands. While it
indeed blocks common overflow or underflow issues, the lack of float support in Solidity may
introduce another subtle, but troublesome issue: precision loss. In this section, we examine one
possible precision loss source that stems from the different orders when both multiplication (mul) and
division (div) are involved.

In particular, we use the NFTVault::_calculateAdditionalInterest() as an example. This routine
is used to calculate the additional global interest since last time the contract’s state was updated.

553 f unc t i on _ c a l c u l a t e A d d i t i o n a l I n t e r e s t () i n t e r n a l view re tu rn s (uint256) {
554 // Number of seconds since {accrue} was called
555 uint256 e lapsedTime = block . timestamp − tota lDebtAcc ruedAt ;
556 i f (e lapsedTime == 0) {
557 re tu rn 0 ;
558 }

560 i f (tota lDebtAmount == 0) {
561 re tu rn 0 ;
562 }

564 // Accrue interest
565 uint256 i n t e r e s t P e rY e a r = (tota lDebtAmount ∗
566 s e t t i n g s . d e b t I n t e r e s t A p r . numerator) /

14/21 PeckShield Audit Report #: 2021-458

Public

567 s e t t i n g s . d e b t I n t e r e s t A p r . denominator ;
568 uint256 i n t e r e s t P e r S e c = i n t e r e s t P e rY e a r / 365 days ;

570 re tu rn e lapsedTime ∗ i n t e r e s t P e r S e c ;
571 }

Listing 3.4: NFTVault:: _calculateAdditionalInterest ()

We notice the calculation of the final result (line 570) involves mixed multiplication and devi-
sion. For improved precision, it is better to calculate the multiplication before the division, i.e.,
interestPerYear*interestPerSec/365 days. Note that the resulting precision loss may be just a small
number, but it plays a critical role when certain boundary conditions are met. And it is always
the preferred choice if we can avoid the precision loss as much as possible. Note the ERC20Vault::

_getDebtInterest() routine can be similarly improved.

Recommendation Revise the above calculations to better mitigate possible precision loss.

Status The issue has been confirmed.

3.4 Trust Issue of Admin Keys

• ID: PVE-004

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [6]

• CWE subcategory: CWE-287 [3]

Description

In the JPEG’d protocol, the privileged owner account plays a critical role in governing and regulating the
system-wide operations (e.g., vault/strategy addition, reward adjustment, and parameter setting).
It also has the privilege to control or govern the flow of assets for investment or full withdrawal
among the three components, i.e., vault, controller, and strategy.

With great privilege comes great responsibility. Our analysis shows that the governance account
is indeed privileged. In the following, we examine the current privilege management graph in the
JPEG’d protocol (Figure 3.1).

We emphasize that the privilege assignment among vault, controller, and strategy is properly
administrated. However, it is worrisome if the governance is not governed by a DAO-like structure. The
discussion with the team has confirmed that the governance will be managed by a multi-sig account.

We point out that a compromised governance account would allow the attacker to add a malicious
controller to steal all funds whenever the farm() call is made. It could also allow for the dynamic
addition of a new malicious strategy, which directly undermines the assumption of the JPEG’d protocol.

15/21 PeckShield Audit Report #: 2021-458

Public

Figure 3.1: The Privilege Management Chain in JPEG’d

Recommendation Promptly transfer the governance privilege to the intended DAO-like gover-
nance contract. And activate the normal on-chain community-based governance life-cycle and ensure
the intended trustless nature and high-quality distributed governance.

Status This issue has been confirmed and partially mitigated with a multi-sig account to
regulate the governance/controller privileges.

3.5 Duplicate Pool Detection and Prevention

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: LPFarming

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [5]

Description

The JPEG’d protocol provides incentive mechanisms that reward the staking of supported assets with
certain reward tokens. The rewards are carried out by designating a number of staking pools into
which supported assets can be staked. Each pool has its allocPoint*100%/totalAllocPoint share of
scheduled rewards and the rewards for stakers are proportional to their share of LP tokens in the
pool.

In current implementation, there are a number of concurrent pools that share the rewarded tokens
and more can be scheduled for addition (via a proper governance procedure). To accommodate these

16/21 PeckShield Audit Report #: 2021-458

Public

new pools, the design has the necessary mechanism in place that allows for dynamic additions of new
staking pools that can participate in being incentivized as well.

The addition of a new pool is implemented in add(), whose code logic is shown below. It turns
out it did not perform necessary sanity checks in preventing a new pool but with a duplicate token
from being added. Though it is a privileged interface (protected with the modifier onlyOwner), it is
still desirable to enforce it at the smart contract code level, eliminating the concern of wrong pool
introduction from human omissions.

139 function add(uint256 _allocPoint , IERC20 _lpToken) external onlyOwner {
140 _massUpdatePools ();
141
142 uint256 lastRewardBlock = _blockNumber ();
143 totalAllocPoint = totalAllocPoint + _allocPoint;
144 poolInfo.push(
145 PoolInfo ({
146 lpToken: _lpToken ,
147 allocPoint: _allocPoint ,
148 lastRewardBlock: lastRewardBlock ,
149 accRewardPerShare: 0
150 })
151);
152 }

Listing 3.5: LPFarming::add()

Recommendation Detect whether the given pool for addition is a duplicate of an existing
pool. The pool addition is only successful when there is no duplicate.

139 function checkPoolDuplicate(IERC20 _lpToken) public {
140 uint256 length = poolInfo.length;
141 for (uint256 pid = 0; pid < length; ++pid) {
142 require(poolInfo[_pid]. lpToken != _lpToken , "add: existing pool?");
143 }
144 }
145
146 function add(uint256 _allocPoint , IERC20 _lpToken) external onlyOwner {
147 _massUpdatePools ();
148
149 checkPoolDuplicate(_lpToken);
150 uint256 lastRewardBlock = _blockNumber ();
151 totalAllocPoint = totalAllocPoint + _allocPoint;
152 poolInfo.push(
153 PoolInfo ({
154 lpToken: _lpToken ,
155 allocPoint: _allocPoint ,
156 lastRewardBlock: lastRewardBlock ,
157 accRewardPerShare: 0
158 })
159);

17/21 PeckShield Audit Report #: 2021-458

Public

160 }

Listing 3.6: Revised LPFarming::add()

We point out that if a new pool with a duplicate LP token can be added, it will likely cause a
havoc in the distribution of rewards to the pools and the stakers.

Status The issue has been acknowledged.

18/21 PeckShield Audit Report #: 2021-458

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the JPEG’d protocol, which introduces
a new DeFi primitive - non-fungible debt positions (NFDP). This new primitive allows NFT holders to
use NFTs collateral to mint the stablecoin PUSD. The current code base is well structured and neatly
organized. Those identified issues are promptly confirmed and addressed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

19/21 PeckShield Audit Report #: 2021-458

Public

References

[1] MITRE. CWE-1099: Inconsistent Naming Conventions for Identifiers. https://cwe.mitre.org/

data/definitions/1099.html.

[2] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[5] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[6] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[7] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[8] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[9] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

20/21 PeckShield Audit Report #: 2021-458

https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html

Public

[10] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[11] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[12] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[13] PeckShield. PeckShield Inc. https://www.peckshield.com.

21/21 PeckShield Audit Report #: 2021-458

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About JPEG'd
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Possible Costly JPEGD-yVault LP From Improper Initialization
	Asset Consistency Check Between Vault And Strategy
	Improved Precision By Multiplication And Division Reordering
	Trust Issue of Admin Keys
	Duplicate Pool Detection and Prevention

	Conclusion
	References

